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Abstract: ‘Artificial  intelligence’ used to be about building and using algorithm  
based  computers to solve problems normally regarded as requiring human  
intelligence. The influence of neuroscience has led to a new breed of  
‘computational intelligence’ that exploits the complex dynamics of ‘neural nets’  
and increases our understanding of the term ‘autonomous agent’. 
It has also raised the possibility that we might be able to understand more  
about how the human brain works and ledto a greater ability to build robots that  
learn to adapt to novel environments. Igor Aleksander stressed the importance of depiction 
and planning in human learning and its relevance in understanding  
pathological conditions such as Parkinson’s disease. Inman Harvey described how 
‘artificial evolution’ could give us the next generation of intelligent robots. 
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Introduction 
The use of computers in solving problems normally regarded as requiring human 
intelligence  used to be known as ‘artificial intelligence’ (AI). Such computers used linear 
logic; ‘straight line’ sequences of instructions known as ‘algorithms’. The computer known 
as ‘Deep Blue’, for example, was built by Claude Shannon to play chess and beat the Grand 
Master, Kasparov by using a ‘pruning out’ algorithm which looked at every possible move 
over the next ten steps of the game and then chose the best. But the working of ‘Deep Blue’ 
is unlike what goes on in our heads and the biological neurosciences are beginning to have 
an impact on our ability to built machines that deal with true novelty. Human brains 
appear to exploit complexity and all that that means in terms of the new science. A new 
generation of machines, involving a very different way of working, is necessary if we are 
to really understand and build ‘autonomous agents’ as robots. On the other hand, 
understanding the way  we as humans cope with the world is an aspect of psychology  
which is important in treating pathological conditions such as Parkinson’s disease.  
          
Features of Human Perception and Conception 
A simple way of understanding ‘seeing’ in the past was that it involved assigning ‘labels’  to 
pictures coming into our heads via the light waves. We can build robots that operate this 
way,  but it’s really not the way we ‘see’ at all, and it does not account for  the enormous 
amount of activity that goes  on in our heads. The eye contains a central part called the 
fovea and one that surrounds it called the perifovea. But it is a small structure at the back 
of the eyeball called the ‘superior colliculus’ which moves the eye around and the fovea 
‘sees’ differently from the perifovea. In observation there is a great deal of movement  of 
the eye  and interestingly a patient with Parkinson’s disease moves his or her eye in a very 
different way to a normal person. Visual ‘planning’ seems to be affected by dopamine 
levels though it is not fully understood how. Memory plays an important part and if we 
monitor the way people look at a face, we see that subjects concentrate on specific 
meaningful areas. The superior colliculus seems to control the way the eye circulates 
around these. But outward behaviour tells us  little about the ‘intelligence’ of a system. We 
might, for example, be in an airplane in which there is both a human pilot and and 
autopilot. On normal flights the autopilot does everything our skilled human pilot does but 
which one would we trust in an emergency? Suppose we have a stack of four different 
coloured blocks and are asked to build them in a particular different order. The search 
space (or the total number of different arrangements) for a computer analysing all the  
possibilities is 85, yet a person can envisage a solution without considering all these. In fact 
a test for the early onset of Parkinson’s is to give the patient this sort of problem. 
         The Crick and Kosh hypothesis is that the early visual system deconstructs the world 
into ‘features’ which are reconstructed by the prefrontal areas of the brain. Zeki and 
Bartels postulate that physically separate and functionally specialised sites of the visual 
system contribute independently to conscious visual sensation in a way that does not 
require neurally mediated binding or synchronisation between these areas. Igor pointed 
out that this does not take account of the part  that memory might play in determining eye 
scanning. The primary visual cortex, the superior colliculus and various motor 
mechanisms are physical entities that contribute to ‘depiction’ in our minds but memory 
seems vital for coherence. There are ‘gaze-lock’ cells and cells that respond only if the eye 
is pointing in a particular direction. Such observations help us to understand how a 
moving eye can give us the perception of a solid world. But the Zeki and Bartels hypothesis 
doesn’t tell us how we can visualise a face or an object when we’re looking at a blank sheet 
of paper. We can imagine an image as being ‘out there’, not in our heads; a visual memory 
which may not be as accurate as an actual perception but it can none the less be conjured. 
Defining the ‘intelligence’ of a system is therefore tricky, it cannot be done in terms of 
behaviour but only somehow by the processes that go on inside it. 
 
Training Robots 
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Building robots that ‘see’ the world and then respond to it in certain ways can be simply 
achieved by  a putting a ‘look up’ computer program inside their heads.  Given a certain 
kind of specified input the computer has to look up an appropriate kind of output. The 
computer can be programmed to classify experiential inputs within certain prescribed 
limits and to give set responses. The more the robot is trained and the richer its program 
the quicker and more discerning it gets.  
         A single neuron functions a bit that way.  According to a flow of programming 
information it responds to recognised patterns and does its best with things it hasn’t seen 
before. Stuart Kauffman’s early model of a complex system had neuron-like nodes but they 
only had two inputs. When he put a lot of these nodes together and interconnected them 
everybody thought that the system would simply go for a random walk through its space of 
states (all its possibilities). But, depending on the interconnectivity,  he found it exhibited 
much more stability than anyone had thought and he wrote a paper in 1969 on this 
unexplained stability. If we put together nodules which have stable properties then some 
ways of interconnecting give no behaviour at all but others give all kinds of behaviour. 
Complexity theory examines this kind of phenomenon. 
         If we consider the ‘stacking’ problem considered earlier, a single neural node is 
trained by receiving information about the way people restack objects. It cannot solve the 
problem in the way we solve the problem but it has a way of representing it or part of it 
which is very different from the ways people have thought in classical computer science. 
 A representational neural network of about 180 by 180 neurons has been used to 
investigate this process. Each neuron responds to an input by giving out an electrical signal 
displayed on a visual display unit as a single dot. The system has a built-in time sequence 
so that changes are shown as a series of frames. The system is trained by changing a visual 
target to which it is responding, much like taking a series of shots of someone moving the 
blocks. It is made to respond to the sequence of events over and over again, reinforcing the 
input to each individual neuron node. If neurons are confused about their input they 
respond by giving odd flashes. If the characteristic of each neuron is changed by reducing 
its power of generalisation or classification it becomes less tolerant to changes in its input 
and the system behaves rather like a patient who has been given an anaesthetic. The nice 
sequence of backwards and forwards steps in the block building disappears, the system 
exhibits more and more ‘noise’ (random behaviour) and then goes to sleep. This is typical 
of a complex system in which the local activity of a large interconnected mass of things is 
changed resulting in a dramatic difference in global behaviour.  
         Computers that can only remember things that they have ‘seen’ like a  yellow 
triangle or banana are considered ‘unevolved’. Human beings are able to imagine a blue 
banana even if they have never seen one. Some process in our brains must enable us to do 
it but nobody is quite sure what. Zeki and Bartels tell that visual consciousness may give us 
the impression of one thing though lots of different parts of the brain are active.  The 
superior colliculus moves the eyes around though memory somehow constrains the 
movement. But why would a particular  image or part of an image be reinforced in 
memory and constitute some form of ‘attractor’ in the first place? Some process of 
generalisation or classification seems to be at work and in mechanistic terms we can think 
higher levels of representation as not being all that different from lower level ones.  If 
there are ‘natural kinds’ in the world and not just in our heads then ‘classes’ are something 
we discover. For example, apples, bananas and plums fall into a general class ‘fruit’. Such 
an increase in logical space and the exploration of it would offer a route to blue bananas. 
After all if plums are blue and bananas are yellow and both are members of the class fruit 
then the step to blue bananas seems quite small. We can represent a state space activity in 
which the attractors are bananas and a larger one in which the attractor is ‘fruit’. But such  
ideas of classification are probably far too simplistic for understanding how we can 
conjure up imaginary objects.  
 
Complex Thinking 
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         What takes us from a simple assemblage of neurons to something as massively 
powerful as the human mind? Igor has models in which there are about 120 different 
varieties of neurons though the programming of each is just a few lines. The interesting 
thing is that even when  individual neurons that only perform fixed functions are put 
together very complex emergent behaviour results. By putting in information about the 
way the neurons might work in ‘seeing’ an object a simulated superior colliculus becomes 
sensitive to ‘high spatial frequencies’ and creates the vectors for eye movement. But though 
in very simple terms the neuron basically just looks at the similarity between things its 
been trained on and novel images there is much more in the process of learning about an 
environment and especially the part that language might play. Real neurons are  
funny things, when looked closely they are enormously complex; veritable chemical 
factories responding to and sending out signals. Some produce electrical impulses but 
others squirt chemicals around the local vicinity. They’re very complex in the manner in 
which they work but it is possible to put a ‘box’ round them and describe in mathematical 
terms what they do and then it becomes simple. The way they do things is complicated but 
the result or function is simple.  
         Which is not to say what comes out of the inconnectivity is simple. The notion of an 
‘attractor’ is a mathematical one, coming from ‘trajectories’ and the like. Point attractors 
are where trajectories home in on some ‘space’. But though recurrence in complex systems 
can be impossible to express in mathematical terms there do seem to be important 
attractors  and feedback in the behaviour of organic systems. ‘Feedback’ is a term which 
should not perhaps be used in the context of complex systems because it tends to elicit the 
question: ‘is it positive or negative?’ which comes from ‘control theory’ which treats 
stability and instability very simply. You cannot apply the term to a system of neurons or 
nodes in which some are acting in an inhibitory way and others in an excitatory way. 
Anyway in order for a system to have well behaved attractors it must be complex. 
         How low level activity in the brain might lead to higher level abstractions is the 
subject of much debate. If we are trying to describe a system as outside observers then we 
might distinguish low level activities and higher levels of abstraction and some kind of 
feedback acting in a corrective manner. But what ‘getting it wrong’ in terms of system 
change is hard to say. Putting neurons in a new environment makes things go very ‘noisy’ 
and unstable  
         ‘Changing ones mind’ can involve substituting one image for another and this 
suggests a non linear process. Neuro-anatomy also indicates neuro-chemical activity has a 
lot to do with mood or imagination and people whose brains have localised lesions in areas 
which are implicated in emotional states seem to have greater difficulty in making 
decisions than those in areas associated with logic or geography. And this approach may 
be important. A robot on Mars might well benefit from some equivalent of fear or pleasure 
to achieve its mission and ensure its survival. But changing ones mind means more than 
simply substituting one image for another. It may also involve taking a personal decision 
and this would  involve the notion of ‘self’. It was suggested that Ross Ashby’s idea of 
homeostasis or maintaining a stable position in a changing environment might be of help. 
Some kind of internal training that allows regeneration of the idea of self would allow 
measurement of pain or pleasure. Igor’s stance, however is to see anxiety more as 
something to do with restructuring the state spaces that are in place. A robot would say to 
itself: ‘hey I’m not making the right predictions here!’ He (or she) would not feel right so 
something would change. Since the ‘noise’ level is an indication of confidence in the 
system it would go up. When building robots it may be important that it can run away 
when it doesn’t feel right but there’s a long way to go on that. 
 
Changing Metaphors 
Inman pointed out that in 1951 the most powerful computer in the world cost about four 
million dollars now the equivalent power costs about forty cents. Moore’s law predicts that 
the numbers of transistors on a chip doubles about every eighteen months and this 
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exponential growth has meant that the computer in a watch is as powerful as the one built 
in 1951. But we do not exploit this power that we have and this is as true for practical 
engineering as it is for the designing of robots.The reason that we fail to fully exploit the 
power that we have is that we evolved to swing from trees and fun after things on the 
African plain rather than design complex systems. We really aren’t very good designers or 
mathematicians in that respect. We build heuristics which enable us to understand the 
world by carving it up into modules that we make as independent from one another as 
possible. This has been the classical approach to building computer. A computer is very 
good at solving our mathematical problems and because they’re good at that we’ve tended 
to use it as a metaphor for the brain. This is no different from previous times when the 
steam engine or the telephone network was used as a metaphor because they were the 
most complex things at the time.  
         ‘Artificial intelligence’, now better known as ‘computational intelligence’ has had 
some enormous successes. The ability to manipulate text on the computer screen was once 
regarded as AI but since it is now so commonplace nobody would regard it as such. But the 
approach falls down in the pursuit of practical robotics because it is based on the 
assumption that all cognition is about finding out facts about the world, putting them into 
a computer and manipulating them like symbols in a mathematical equation. Classical 
computing can do calculations in a flash that would take the human brain an hundred 
years but it’s no good inside a robot kitten that has a sporting chance of crossing the road 
without getting run down. A classical robot called ‘shaky was once built to observe where 
some solid cubes and pyramids were in a room, build up a picture in its head  and then 
plan its move. It took 15 minutes to do that and move a few centimeters. If an object in the 
room was moved it had to start all over again. This was not due to limited power in the 
computer but a ‘mindset’ that constrained the kind of architecture that the designers put in 
the  robot’s head.  
         Such architecture is known for short as ‘sense, model, plan, action’(SMPA). Inside the 
robot’s head there is a module which takes sensory input such as light falling on light cells 
and builds up a model which can be put into programmatic form.The question ‘how do I 
get around the world?’  which has been converted to a bit of logic then becomes answered 
by a few algorithms and the solution is transmitted to the motors as action. There’s the 
whole Church-Turing assumption that any process that a human being carries out is like a 
list of instructions. The moon takes a certain pathway through space but it is people that 
compute its trajectory. The moon simply does whatever it does though how we might 
know that is a tricky philosophical question. Assuming that the brain operates the same 
logical rules that we use in our language is a bit like assuming that our calculation of its 
trajectory is the one that God made. Of course we can use a computer to simulate what the 
moon does and we can use a computer to simulate a nervous system or even evolve robots 
whose brains are evolving dynamic systems but we don’t have to believe that reasoning is 
the prime consideration in building a walking robot. Inman’s point is that the math in 
building some sensory coordination, about how we manage to put one foot in front of the 
other without falling over is pretty tricky but natural behaviour such as walking can 
evolve in a body with no brain. A model of a leg which can be simulated on the computer 
or made in real wood, providing it has a constrained knee joint and a universal hip joint 
will walk down a tilted plank in a very human like way. Inman calls this the ‘dynamic 
systems’ approach to robot building. Rather than assume reasoning ‘all the way down’ 
Inman would like to assume dynamics all the way up. His suggestion is  that not only is 
this approach appropriate to low level motor sensory mechanisms but that even our ability 
to calculate two times three is equal to six is just a more sophisticated example of dynamic 
skills. When dynamic systems in the form of nervous systems are coupled with the 
dynamics of the environment, appropriate behaviour for survival results. We can describe 
simple systems in terms of variables in an equation and we think that any physical system 
we set up with pendulums, cogs and springs is in principle governed by physical laws  that 
apart from inevitable ‘noise’ we discover. Interaction of an organism with it physical 



6 

environment is via sensors and motors and what we rapidly learn is that if we understand 
one dynamic system on its own and couple it with another one we understand, the 
resultant system is full of surprises.  
         We and cats are designed by evolution and AI design has so far not taken this into 
account when building robots to deal with the entirely new. Whereas a bacterium is truly 
adaptive and can hunt down nutrients and avoid harmful chemicals our classically 
designed robot cannot. This largely stems from our belief that the way to deal with the 
world  is to build some kind of working model of it in our heads. And this in turn arises 
from our stance as independent observers. Such dualism separates the mental from the 
physical. It assumes there is a way the world is, in an objective sense and the scientist or 
robot is a spectator observing it through various sense organs. Though we no longer 
regard the brain as storing little pictures of the world, neural network designers still seem 
to assume that building a brain means somehow making the connections that produce the 
attractors that model the ‘outside world’. Just as it is deemed necessary to have certain 
specific genes to have certain characteristics it becomes necessary to have certain 
attractors in the neural network system. Inman seems to think differently. He denies that 
he has any models in his head whatsoever. He admits that we all use symbols but that they 
are not represented in our brains as any particular patterns at all.  The whole ideal of the 
brain as a computer implemented in ‘wet stuff’, he feels, reaches back to the television 
screen in our heads or  the little ‘homunculus peering out at the world. 
 
A ‘Dynamic Systems' Way To Develop Robots 
 
Trivially we have brain states but the patterns in our brains do not tell us anything about 
how we think. Darwinian evolution requires heredity, variation and selection and DNA 
holds coded instructions in a manner that ensures the replication of an organism. If the 
instructions should be completely garbled the organism would not be procreated. 
         Suppose we try to evolve a paper dart by writing down some folding instructions in a 
completely random manner. We could produce a number of variations, throw the 
products out of the window and see which went the farthest. We then look for some 
pattern or meaning in the sequences rewrite the list incorporating the pattern and repeat 
the experiment. By doing it enough times we stand a good chance of producing a 
reasonable paper dart. 
         As robot engineers we want to produce robots that are adaptable to environments we 
specify. We don’t much care how their brains evolve but we do want them to exhibit some 
particular behaviour patterns. This is unashamed behaviourism. By making a simulated 
neural net with sufficient connectivity and nodal instructions to enable ‘loops’ and 
‘attractors’ to arise, we simply evolve the system in the way we want. Since the robot is a  
system coupled with a physical environment we also have to build in the ability to alter 
form and locomotion. Of course this isn’t like natural evolution which involves the co-
evolution of an organism in a whole ecosystem though specific trends such as ‘arms races’ 
between species can often be identified. Nothing tells lions, for example to run as fast as 
they can to catch antelopes or antelopes to run as fast as they can to escape being eaten but 
the end result is that we end up with fast lions and antelopes. 
         Using some kind of artificial DNA that encodes a dynamic system is not simply 
computing outputs from inputs. The unknown evolved architecture may involve all sorts of 
attractors and enhancing or inhibiting nodes but it remains like a brain in a vat with its 
own internal unknown dynamics. It’s really just a convenient way of using evolution to 
pick a way through logical spaces by dealing with different environmental pressures. A 
typical setup involves an evolved net connected to sensors on one side and locomotors on 
the other. The robot is then put in an environment which is real or simulated, put through 
the test and its score card marked. An eight legged robot was produced in this way with 
locomotors and infra-red sensors that with more sensitivity would potentially enable it to 
cross the road without being run over. Its brain was completely produced by artificial 
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evolution and downloaded after some ten thousand generations. But it had nothing inside 
its head that we would wish to point to as a model of an ‘external’ world. Its brain was 
simply a ‘black box’ which we could use to generate the behaviour we required. Biologists 
define ‘adaptability’ in an a posteriori way whereas robot engineers can aim towards 
particular goals. But it’s still a bit like gardening. Mutual adaptation does not build 
‘Frankenstein’ monsters but it does build robots that want to live and given a choice 
between an autopilot and an educated robot we might be wise in certain circumstances to 
choose the latter. 
  
Conclusion 
We can approach the subject of artificial intelligence in two ways: as a means of 
understanding what might go wrong in our brains either physically or psychologically or 
as a means of producing intelligent robots. The term ‘Dynamics’ takes us towards 
behaviourism whereas the term ‘cognition’ leads us away from behaviourism to 
contemplation. Human learning has much to do with contemplation. It is working out 
whether action A will be right or some other action B will be appropriate and a great deal 
of representational experience is involved in this. Our ‘fitness’ depends on our ability to 
detect things not in the real world but as what might be called ‘opinary emanations’. As 
behaviourists we might see such imaginings as merely rehearsing procedures that have 
evolved throughout our history though how that ability could have resulted purely from 
the ‘dynamics’ is hard to see. The ability to depict a blue banana, for example, seems to 
point to something else. 


