CITIES, ENERGY AND CLIMATE CHANGE: COMPLEXITY AND MODELLING

Alan Wilson

Centre for Advanced Spatial Analysis
University College London

INTRODUCTION

- understanding the form, functioning and evolution of cities is critical for future work on energy and climate change
- much progress has been made in understanding the mathematics and the computer science of complex systems and urban modelling is in the vanguard of this
- what is needed now is to carry our present expertise into the domain of a new problem

A METROPOLITAN SYSTEM

Population Economy

Employment Jobs

Use of services Products and services

Interactions
(Transport and Communications)

statics/steady state 'physiology'/dynamics-DNA

- modelling urban development and evolution is one of the grand challenges of 21C science
- we can now see that we have been at the leading edge of complexity science for a number of years; and the wider developments will now help us
- how can we apply it to energy and climate change?

BACKGROUND: THE HERITAGE FROM THE 1960s ONWARDS

- interaction models
- Lowry and beyond
- demographics
- input-output which did include the incorporation of energy flows
- the 'dynamics' hypothesis: the evolution of structure
- micro-simulation and agent-based modelling
- informationsystems/GIS/visualisation/geodemographics/IGIS
- economic foundations: Alonso, Herbert and Stevens, Anas, Krugman,.....; still a multi-centric challenge
- applications e.g. interaction models as location models

Layers of disaggregation

- upper layer modelling as a framework particularly in relation to possible rates of development:
 - nations within the international system
 - regions within a nation
 - cities within a region/nation
 - intra-urban
- demography and input-output dominate the upper layers; interaction and spatial structure models, the lowest.

A modelling framework

Principal sectors:

- Population
- Housing
- Public services such as schools and hospitals
- Retail services
- Capacity in the economy buildings, offices, equipment etc
- Government

The principal spatial interactions are:

- The journey to work
- Population to housing
- Population to public services
- Population to retail centres
- Business to public services
- Business to retail services
- Business to business
- Government (spending) to population, public services, retail services and the economy

This leads to the following definitions of key variables:

- P_i^m, the number of type m people in zone i
- H_i^k, the number of type k houses in zone i
- V_j^n , the capacity of type-n consumer services in j; F_j^{mn} , the take-up (on a suitable measure school places e.g.) by m-type people
- W_jⁿ, the capacity of type-n retail facilities in j; D_j^{mn}, the take-up of these facilities by m-type people
- Q_j^n , the capacity of the n^{th} economic sector in zone j; X_j^n , the product of sector n in j
- G_iⁿ, government spend in j.

The main interaction variables are:

- Y_{ij}^{mVn}, Y_{ij}^{mWn}, Y_{ij}^{mQn}, the flows to work in sectors V, W and Q from population group m in zone i to sector n in zone j for V, W and Q respectively;
- N_{ij}^{mnk}, the allocation of type m people who work in sector n in j to type k houses in i;
- U_{ij}^{mn}, the flow of type m people in zone i to consumer services of type n in j;
- S_{ii}^{mn}, the flow to retail facilities of type n;
- J_{ij}^{mn}, the flow of goods from sector m in i to the consumer services sectors n in j;
- K_{ij}^{mn}, the flow of goods from sector m in i to the retail services sectors n in j;
- M_{ij}^{mn}, the flow of goods from sector m in i to sector n in j.

Input-output table

	Р	Н	V	W	Х	G	Exports	Output
								totals
Р			Υ	Υ	Υ	T ^P		
Н	N					T ^H		
V	U					T ^V		F
W	S					T ^W		D
Q			J	K	М	T ^Q	Ехр	Х
G	G ^P	G ^H	G ^V	G ^W	G ^Q			
Imports					Imp			
Input								
totals								

A system diagram

- it is straightforward, if complicated, to represent a megalopolis in this way; there will be
 - a) activities at locations
 - b) interactions
 - c) both on more slowly changing structures
- a) and b) represent the 'physiology' of the system; c) the 'DNA'-based system evolution

- the model will be nonlinear and so we should recognise that there will be:
 - multiple equilibrium solutions
 - path dependence
 - phase transitions
 - implications for forecasting capabilities
- to fix ideas, consider an example

Retail as a model archetype: variable definitions

 e_iP_i - demand in zone i

W_i - attractiveness of zone j

 S_{ii} - flows between i and j

 \boldsymbol{c}_{ij} - cost of travel between i and j

Spatial interaction

$$S_{ij} = A_i e_i P_i W_j^{\alpha} exp(-\beta c_{ij})$$

where

$$A_i = \Sigma_k W_k^{\alpha} \exp(-\beta c_{ik})$$

and

$$D_j = \Sigma_i S_{ij}$$

which is

$$D_{j} = \sum_{i} [e_{i}P_{i}(W_{j})^{\alpha} exp(-\beta c_{ij})/\sum_{k}(W_{k})^{\alpha} exp(-\beta c_{ik})]$$

Financial Services

Halifax, Nationwide, Alliance & Leicester, Bank of Scotland, Co-op

Automotive

Ford, Jaguar, Nazda, Volvo, Land Rover, Daimler-Chrysler

Telecoms

Telewest, Marconi, THUS, OnCue, Bulldog

Retall Petroleum

Exxon Mobil, BP, Total Fina

Retail

Asda, Dixons, Sainsbury's, Oxfam IKEA, Our Price

Other

Aventis, Warner-Lambert, DTI, Leeds TEC

The evolution of structure

Let the cost of running a retail centre be $C_j(W_j)$. Then, the structural dynamics can be presented as

$$\Delta W_{j}(t, t+1) = \varepsilon [D_{j}(t) - C_{j}(t)]W_{j}(t)$$

which is, essentially, the Lotka-Volterra equation

Then

$$D_j = C_j = KW_j$$

at equilibrium

That is:

$$\Sigma_{i}\{e_{i}P_{i}W_{j}^{\alpha}exp(-\beta c_{ij})/\Sigma_{k}W_{k}^{\alpha}exp(-\beta c_{ik})\}=k_{j}W_{j}$$

IDENTIFYING A POSSIBLE PHASE TRANSITION

PARAMETER SETS EITHER SIDE OF A PHASE TRANSITION

A big leap: urban/megalopolitan 'DNA'

- a state vector: {P, H, V, W, X, L, p, c, G}
- recall 'path dependence':
 - development can be seen as constrained by the initial conditions
 - then see the structural variables the initial conditions as the 'DNA'
- what are the development 'possibilities' for current DNA?
- can we see how to 'adjust' the DNA
 - either to avoid an end state
 - or to move towards one?

Applications to metropolitan criticality

- consider:
 - climate change
 - sustainability
 - we have to learn how to represent these as possible changes in model variables or parameters: an oil crisis would be an obvious example to be represented as a steep rise in the β-parameter
- we could then explore changes in (a) the 'physiology'
 - the fast dynamics and (b) structural changes the slow dynamics

THE RESEARCH AGENDA

- establish the basics: access to data, presentation, analysis, modelling, planning
- then set up the model for case studies:
 - layers of disaggregation
 - the 'physiology'
 - the evolution of structure
 - phase transitions: the drivers; developing the mathematics
 - urban typologies based on underlying structures: the 'DNA' argument
 - linking models to the big picture
- implications for planning